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How to UNDERSTAND?



Visual Features

Shape, color, texture, etc



Image Matching

by Diva Sian

by swashford

http://www.flickr.com/photos/diaphanus/136915456/
http://www.flickr.com/photos/swashford/428567562/


Harder Case

by Diva Sian by scgbt

http://www.flickr.com/photos/diaphanus/136915456/
http://www.flickr.com/photos/scpgt/328570837/


Even Harder Case

“How the Afghan Girl was Identified by Her Iris Patterns”  Read the story 

http://www.cl.cam.ac.uk/~jgd1000/afghan.html


Harder still?

NASA Mars Rover images



NASA Mars Rover images

with SIFT feature matches

Figure by Noah Snavely

Answer below (look for tiny colored squares…)



Features

All is Vanity, by C. Allan Gilbert, 1873-1929

http://upload.wikimedia.org/wikipedia/en/c/c9/Allisvanity.jpg
http://upload.wikimedia.org/wikipedia/en/c/c9/Allisvanity.jpg


Image Matching



Image Matching



Invariant Local Features

Find features that are invariant to transformations
◦ geometric invariance:  translation, rotation, scale

◦ photometric invariance:  brightness, exposure, …

Feature Descriptors



Advantages of Local Features
Locality 

◦ features are local, so robust to occlusion and clutter

Distinctiveness: 

◦ can differentiate a large database of objects

Quantity

◦ hundreds or thousands in a single image

Efficiency

◦ real-time performance achievable

Generality

◦ exploit different types of features in different situations



Image Matching 

General Approach



More Motivation…  
Feature points are used for:

◦ Image alignment (e.g., mosaics)

◦ 3D reconstruction

◦ Motion tracking

◦ Object recognition

◦ Indexing and database retrieval

◦ Robot navigation

◦ … other



Features

Point/patch,

Edge/curve

Region



Want Uniqueness
Image regions that are unusual

◦ Lead to unambiguous matches in other images

How to define “unusual”?





Corner Detection

Basic idea: Find points where two edges meet—i.e., high gradient 
in two directions

“Cornerness” is undefined at a single pixel, because there’s only 
one gradient per point
◦ Look at the gradient behavior over a small window

Categories image windows based on gradient statistics
◦ Constant: Little or no brightness change

◦ Edge: Strong brightness change in single direction

◦ Flow: Parallel stripes

◦ Corner/spot: Strong brightness changes in orthogonal directions



Local Measures of Uniqueness
Suppose we only consider a small window of pixels

◦ What defines whether a feature is a good or bad 
candidate?

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



Feature Detection

“flat” region:

no change in all 

directions

“edge”:  

no change along 

the edge direction

“corner”:

significant change 

in all directions

Local measure of feature uniqueness
◦ How does the window change when you shift it?

◦ Shifting the window in any direction causes a big change

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



Consider shifting the window W by (u,v)

• how do the pixels in W change?

• compare each pixel before and 

after by

summing up the squared 

differences (SSD)

• this defines an SSD “error” of 

E(u,v):

Feature Detection:  Mathematics

W



Harris Detector: Mathematics
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Change of intensity for the shift [u,v]:

Intensity
Shifted 

intensity
Window 
function

orWindow function w(x,y) =

Gaussian1 in window, 0 outside

Auto-correlation 
function



Auto-Correlation Function



Auto-Correlation Function

Good unique minimum 1D aperture problem No good peak



Taylor Series expansion of I:

If the motion (u,v) is small, then first order approx is good

Small Motion Assumption



Feature Detection: Mathematics
Image gradient
◦ Harris detector with a [-2,-1,0,1,2] filter for Ix

◦ Gaussian filter



Plugging this into the formula on 

Small Motion Assumption
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Feature Detection: Mathematics

W



Feature Detection: Mathematics
This can be rewritten:

x-

x+

Auto-correlation matrix 
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Feature Detection: Mathematics

For the example above

• You can move the center of the blue window to anywhere on the 

blue unit circle

• Which directions will result in the largest and smallest E values?

• We can find these directions by looking at the eigenvectors of A



Quick eigenvalue/eigenvector review
The eigenvectors of a matrix A are the vectors x that satisfy:

The scalar  is the eigenvalue corresponding to x
◦ The eigenvalues are found by solving:

◦ In our case, A is a 2x2 matrix, so we have

◦ The solution:

Once you know , you find x by solving



Quick eigenvalue/eigenvector review
A: A linear transformation 

𝐴 =
3 0
0 1

𝐴 =
1 1
0 1



Feature Detection: Mathematics
This can be rewritten:

Eigenvalues and eigenvectors of H = A
• Define shifts with the smallest and largest change (E value)

• x+ = direction of largest increase in E. 

• + = amount of increase in direction x+

• x- = direction of smallest increase in E. 

• - = amount of increase in direction x+

x-

x+2
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𝐴𝑥− = 𝜆−𝑥−

𝑥+𝐴𝑥+ = 𝜆+
𝑥−𝐴𝑥− = 𝜆−



Feature Detection: Mathematics

Intensity change in shifting window: eigenvalue analysis

1, 2 – eigenvalues of A

(max)
-1/2

(min)
-1/2

If we try every possible orientation (u,v), the max. change in 
intensity is max

𝐸 𝑢, 𝑣 ≅ 𝑢, 𝑣 𝐴
𝑢
𝑣

𝐸 𝑢, 𝑣 = constant on the  ellipse  



Plotting Derivatives as 2D Points

Slide from Robert Collins



Feature Detection: Mathematics

1

2

“Corner”

1 and 2 are large,

1 ~ 2;

E increases in all 

directions

1 and 2 are small;

E is almost constant 

in all directions

“Edge” 

1 >> 2

“Edge” 

2 >> 1

“Flat” 

region

Classification of image 

points using eigenvalues

of H:



Feature Detection: Mathematics
How are +, x+, -, and x+ relevant for feature detection?

• What’s our feature scoring function?



Feature Detection: Mathematics
How are +, x+, -, and x+ relevant for feature detection?

• What’s our feature scoring function?

Want E(u,v) to be large for small shifts in all directions

• the minimum of E(u,v) should be large, over all unit vectors [u v]

• this minimum is given by the smaller eigenvalue (-) of A



Feature Detection
Here’s what you do

• Compute the gradient at each point in the image

• Create the A matrix from the entries in the gradient

• Compute the eigenvalues. 

• Find points with large response (- > threshold)

• Choose those points where - is a local maximum as features



Feature Detection
Here’s what you do

• Compute the gradient at each point in the image

• Create the A matrix from the entries in the gradient

• Compute the eigenvalues. 

• Find points with large response (- > threshold)

• Choose those points where - is a local maximum as features

[Shi and Tomasi 1994]



Harris Detector

Measure of corner response:

 
2

det traceR H k H 

1 2
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H
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(k – empirical constant, k = 0.04-0.06)

Harris and Stephens 1988

• The trace is the sum of the diagonals, i.e., trace(A) = a11 + a22

• Very similar to - but less expensive (no square root)

A A

A

A



Harris Detector: Mathematics

1

2 “Corner”

“Edge” 

“Edge” 

“Flat”

• R depends only on eigenvalues 

of A

• R is large for a corner

• R is negative with large 

magnitude for an edge

• |R| is small for a flat region

R > 0

R < 0

R < 0|R| small



Harris Detector
The Algorithm:
◦ Find points with large corner response function  R (R > threshold)

◦ Take the points of local maxima of R



Harmonic Mean

•Smoother function in the region where 

Brown, M., Szeliski, R., and Winder, S. (2005)
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Isocontours of Response

Harmonic mean

Harris

Shi-Tomasi



Harris Detector: Workflow



Harris Detector: Workflow

Compute corner response R



Harris Detector: Workflow

Find points with large corner response: R>threshold



Harris Detector: Workflow

Take only the points of local maxima of R



Harris Detector: Workflow



Example: Gradient Covariances

Full image
Detail of image with gradient covar-

iance ellipses for 3 x 3 windows

from Forsyth & Ponce

Corners are where both eigenvalues are big



Example: Corner Detection (for camera calibration)

courtesy of B. Wilburn



Example: Corner Detection

courtesy of S. Smith

SUSAN corners



Harris Detector: Summary
Average intensity change in direction [u,v] can be expressed 
as a bilinear form: 

Describe a point in terms of eigenvalues of A :
measure of corner response

A good (corner) point should have a large intensity change in 
all directions, i.e. R should be large positive

 ( , ) ,
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E u v u v H
v
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Outline of Feature Detection 
1. Compute the horizontal and vertical derivatives of the 

image Ix and Iy by convolving the original image with 
derivatives of Gaussians  

2. Compute the three images corresponding to the outer 
products of these gradients. (The matrix A is symmetric, 
so only three entries are needed.)

3. Convolve each of these images with a larger Gaussian.

4. Compute a scalar interest measure using one of the 
formulas discussed above.

5. Find local maxima above a certain threshold and report 
them as detected feature point locations.



Adaptive Non-Maximal Suppression (ANMS)

Uneven distribution

Local maxima & Response value should be significantly (10%) 
larger than all of its neighbors within a radius (r)

Adaptive suppression radius r

(a) Strongest 250                       (b) Strongest 500



(a) Strongest 250                       (b) Strongest 500

(c) ANMS 250, r = 24                  (d) ANMS 500, r = 16

Adaptive Non-Maximal Suppression (ANMS)



Invariance
Suppose you rotate the image by some angle

◦ Will you still pick up the same features?

What if you change the brightness?

Scale?



Invariance 

Repeatability of feature detector:

frequency with which keypoints are detected in one image are found within 
ε (ε=1.5) pixels of the corresponding location in a transformed image 

Rotation
Translation 
Brightness 



Scale Invariance 

Detect features at a 
variety of scales 

Multiple resolutions in a 
pyramid 

Matching in all possible 
levels



Multi-Scale Oriented Patches 

A fixed number of scales 



Scale invariant detection
Suppose you’re looking for corners



Slide from Tinne Tuytelaars

Lindeberg et al, 1996

Slide from Tinne Tuytelaars

Lindeberg et al., 1996

















SIFT Feature 

Scale Invariant Feature Transform (SIFT)

Detect features that densely cover the image over the full range of 
scales and locations

Distinctive Image Features from Scale-Invariant Keypoints, 
David G. Lowe



Keypoint Detection and Matching
Four steps:
◦ Feature detection

◦ Feature description

◦ Feature matching

◦ Feature tracking



SIFT Background
Scale-invariant feature transform
◦ SIFT: to detect and describe local features in an images.

◦ Proposed by David Lowe in ICCV1999.

◦ Refined in IJCV 2004.

◦ Wildly used in image search, object recognition, video 
tracking, gesture recognition, etc. David Lowe

Professor in UBC

34128 times, 2016-3-1

43408 times, 2017-9-20

48404 times, 2018-9-19



Why SIFT is so popular?

An instance of object matching



Why SIFT is so popular?
Desired property of SIFT
◦ Invariant to scale change

◦ Invariant to rotation change

◦ Invariant to illumination change

◦ Robust to addition of noise

◦ Robust to substantial range of affine transformation

◦ Robust to 3D view point

◦ Highly distinctive for discrimination



How to extract SIFT

Test image Detector: where are 
the local features?

Descriptor: how to 
describe them?



SIFT Detector
Desired properties for detector
◦ Position: Repeatable across different changes

◦ Scale: automatic scale estimation

Intuition: Find scale that gives local maxima of some 
function f in both position and scale.



What can be the “signature” function f?
Scale-space kernel 

𝑓(𝑥, 𝑦, 𝜎)



Laplacian-of-Gaussian = “blob” detector

What can be the “signature” function f?



At a given point in the image:

We define the characteristic scale as the scale that produces 
peak of Laplacian response















Scale-space blob detection



Scale-space blob detector: Example



Invariant vs. Equivariant
Invariance 

Equivariance 𝑓 𝑔[𝐼 𝑥 ] = 𝑔[𝑓(𝐼 𝑥 )]
h: Image transformation 
f: Image filter  

𝑓 𝑔 𝐼 𝑥 = 𝑓 𝐼 𝑥

Invariance



IS LOG scale-invariant?

2)/2(-

2
e

2

1
)G()(G 





22 yxx,y,x,y 

2 2
2

4 2

2
( , ) ( , )

x y
G x y G x y 

 

 
   

 

The normalization of the Laplacian with the factor       is required for 
true scale invariance.          --Lindeberg (1994)
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The scale-space kernel
[Koenderink (1984)]
[Lindeberg (1994)]



IS LOG scale-invariant?

characteristic scales

I-right =resize(I-left, 2.5)

3.89*2.5 = 9.725 ~10.1
Mikolajczyk, 2002



Scale-space blob detection

Think about efficiency?

• Separable filters 
• 2K: different K?
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Separable Filter
Convolution of K-size kernel requires K2 operations 

Can be sped up to 2K operations by 
◦ First performing a 1D horizontal convolution 

◦ Followed by a 1D vertical convolution

TK vh



Separable Filter



Technical detail
We can approximate the Laplacian with a difference of 
Gaussians; more efficient to implement.

(Laplacian)

(Difference of Gaussians)



Difference of Gaussian (DoG)

Gaussian

DoG
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Relationship between DoG and 
LoG
Heat diffusion equation

Finite difference 
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DoG LoG

• Normalized LoG for true scale invariance 
• DoG has scales differing by a factor k-1
• Build scale-space with a constant k over all scales

G22



Maxima and minima of DoG
Maxima and minima of the DoG images are 
detected by comparing a pixel (marked with X) to 
its 26 neighbors in 3x3 regions at the current and 
adjacent scales 



Sampling frequency

convolution computing:
At each scale:  MxNxKxK operations

Trades off efficiency with completeness 



DoG Image Pyramid

0 02 

2 3 4 5 6

0 0 0 0 0 0 0, , , , , , ,...k k k k k k      

image MxN, filter 2Kx2K

image M/2xN/2, filter, KxK
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Each 
Octave

DoG Images

Extreme Points
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Resample the Gaussian 
image that has twice the 
initial value of 𝜎 by taking 
every second pixel in each 
row and column. 



Local Extrema Detection

Maxima and minima

Compare x with its 26 neighbors at 
3 scales 



Frequency of sampling in scale
s: intervals in each octave of scale space (              )
◦ k=2^{1/s}

In order to cover a complete octave for extrema
detection
◦ S = s+3 Gaussian images are produced for each octave

◦ s: {-1,S+1}

◦ s+2 DoG images

◦ s scales for extrema detection

0 02 

, 0 2o s

o s k 



Frequency of Sampling in Scale
s=3



Frequency of Sampling in Domain
Trade-off between sampling frequency and rate of detection 

𝜎=1.6



Frequency of Sampling in Domain
While pre-smooth image, discarding the highest spatial frequencies 

Double the size of input image using linear interpolation as the first 
level of the pyramid

◦ Blur the original image at least with sigma=0.5 to prevent significant aliasing

◦ Increasing the number of stable keypoints by a factor of~4



Accurate Keypoint Localization
Derivatives D at the sample point (x,y,sigma) with offset x

Location of accurate extremum is

DoG image



Eliminating unstable keypoint
If x^ > o.5 in any dimension, closer to a different 
sample point 

Discard extremum that 03.0)ˆ( xD



Eliminating unstable keypoint





Eliminating Edge Responses
Motivation
◦ DoG aims to detect “blob”.

◦ DoG function have a strong response along edges.

◦ Remove such key points by Hessian Matrix analysis

Hessian matrix
◦ Formulation H=A
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Eliminating Edge Responses

r=10



Orientation
Gradient and angle:

Orientation selection



SIFT Descriptor 



SIFT Descriptor
Making descriptor rotation invariant

• Rotate patch according to its dominant gradient orientation
• This puts the patches into a canonical orientation.



SIFT Descriptor

Use histograms to bin pixels within sub-patches 
according to their orientation.



Summary of SIFT Feature
Descriptor: 128-D
◦ 4 by 4 patches, each with 8-D gradient angle histogram:

4×4×8 = 128

◦ Normalized to reduce the effects of illumination change.

Position: (x, y)
◦ Where the feature is located at.

Scale
◦ Control the region size for descriptor extraction.

Orientation
◦ To achieve rotation-invariant descriptor.



Application in Image Search
• Text Words in Information Retrieval (IR)

 Compactness

 Descriptiveness

Retrieve

Of all the sensory impressions 
proceeding to the brain, the visual 
experiences are the dominant ones. 
Our perception of the world around 
us is based essentially on the 
messages that reach the brain from 
our eyes. For a long time it was 
thought that the retinal image was 
transmitted point by point to visual 
centers in the brain; the cerebral 
cortex was a movie screen, so to 
speak, upon which the image in the 
eye was projected. 

sensory, brain, 
visual, perception, 

retinal, cerebral cortex,
eye, cell, optical 

nerve, image
Hubel, Wiesel

China is forecasting a trade surplus of 
$90bn (£51bn) to $100bn this year, a 
threefold increase on 2004's $32bn. 
The Commerce Ministry said the 
surplus would be created by a 
predicted 30% jump in exports to 
$750bn, compared with a 18% rise in 
imports to $660bn. The figures are 
likely to further annoy the US, which 
has long argued that China's exports 
are unfairly helped by a deliberately 
undervalued yuan.  

China, trade, 
surplus, commerce, 

exports, imports, US, 
yuan, bank, domestic, 

foreign, increase, 
trade, value

Bag-of-Word model



Conclusion of SIFT
Merit
◦ Desired property in invariance in changes of scale, rotation, 

illumination, etc.

◦ Highly distinctive and descriptive in local patch.

◦ Especially effective in rigid object representation.

Drawback
◦ Time consuming for extraction

◦ About one second  in average for an image with size of 400 by 400.

◦ Poor performance for un-rigid object.
◦ Such as human face, animal, etc. 

◦ May fail to work in severe affine distortion.
◦ The local patch is a circle, instead of an ellipse adjusted to the affine distortion.


