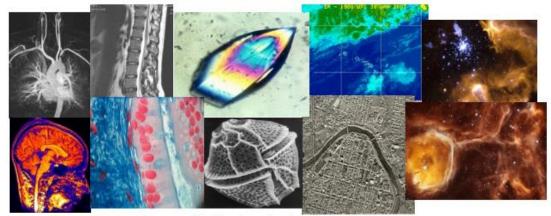
Image Features

XUEJIN CHEN

陈雪锦

Vision is useful: Images and video are everywhere!

Surveillance and security



Medical and scientific images

How to UNDERSTAND?

COMPARE with WHAT we learn before?

Visual Features

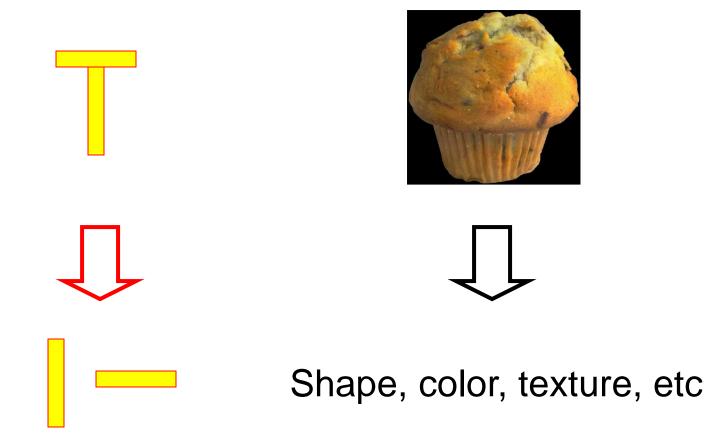
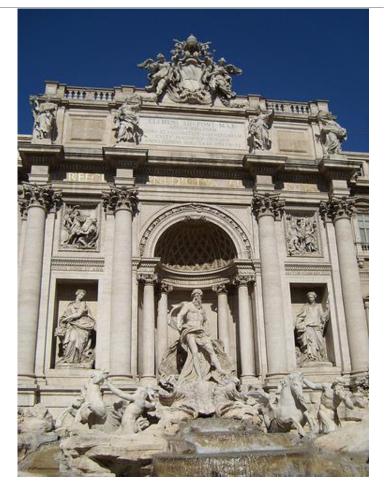


Image Matching

by Diva Sian



by <u>swashford</u>

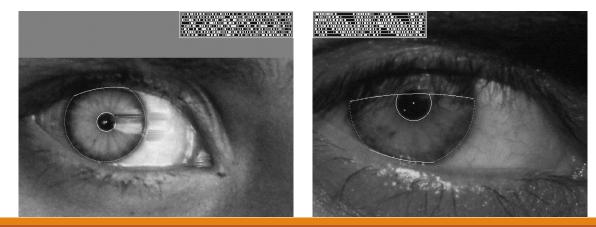
Harder Case

by <u>Diva Sian</u>

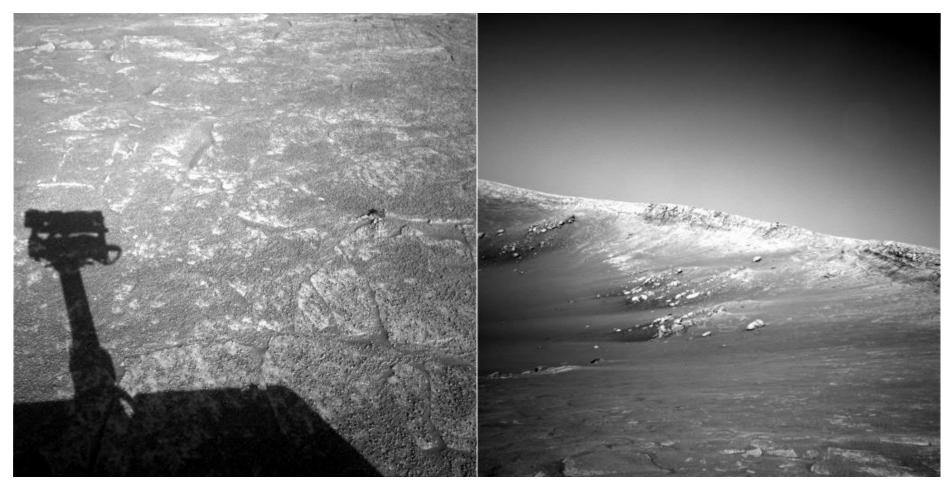
by <u>scgbt</u>

Even Harder Case

"How the Afghan Girl was Identified by Her Iris Patterns" Read the story

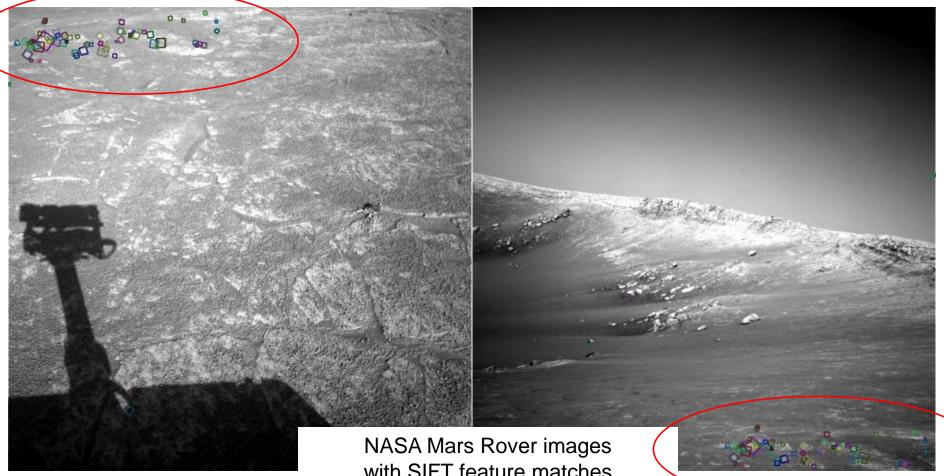


Harder still?



NASA Mars Rover images

Answer below (look for tiny colored squares...)



with SIFT feature matches Figure by Noah Snavely

Features

All is Vanity, by C. Allan Gilbert, 1873-1929

Image Matching

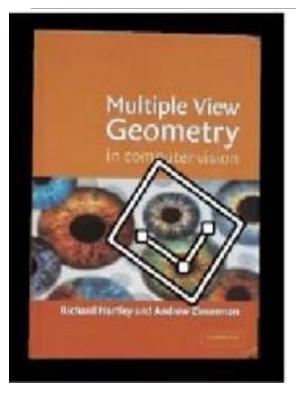
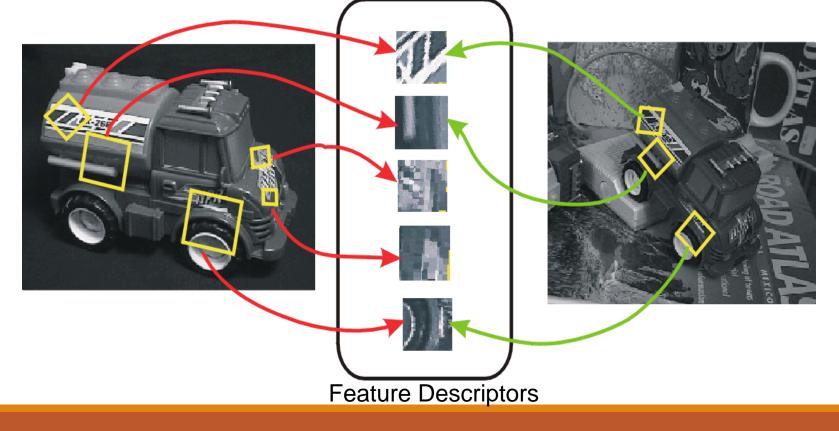


Image Matching

Invariant Local Features

Find features that are invariant to transformations

- geometric invariance: translation, rotation, scale
- photometric invariance: brightness, exposure, ...



Advantages of Local Features

Locality

• features are local, so robust to occlusion and clutter

Distinctiveness:

can differentiate a large database of objects

Quantity

hundreds or thousands in a single image

Efficiency

real-time performance achievable

Generality

• exploit different types of features in different situations

Image Matching

N pixels

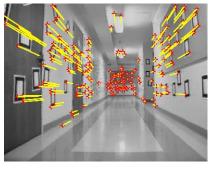
General Approach Similarity f_A f_B measure e.g. color e.g. color $d(f_A, f_B) < T$ N pixels

- Find a set of distinctive keypoints
- 2. Define a region around each keypoint
- 3. Extract and normalize the region content
- 4. Compute a local descriptor from the normalized region
- 5. Match local descriptors

More Motivation...

Feature points are used for:

- Image alignment (e.g., mosaics)
- 3D reconstruction
- Motion tracking
- Object recognition
- Indexing and database retrieval
- Robot navigation
- ... other



Features

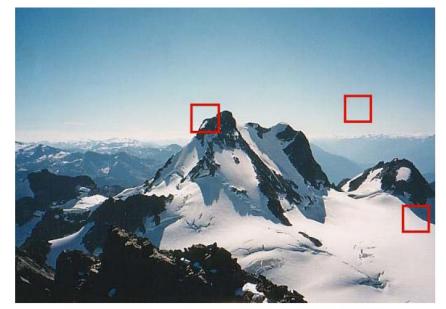
Point/patch, Edge/curve Region

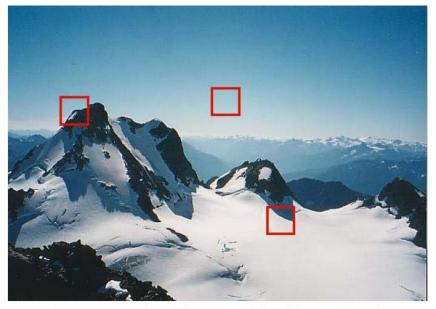
Want Uniqueness

Image regions that are unusual

• Lead to unambiguous matches in other images

How to define "unusual"?





Corner Detection

Basic idea: Find points where two edges meet—i.e., high gradient in two directions

"Cornerness" is undefined at a single pixel, because there's only one gradient per point

Look at the gradient behavior over a small window

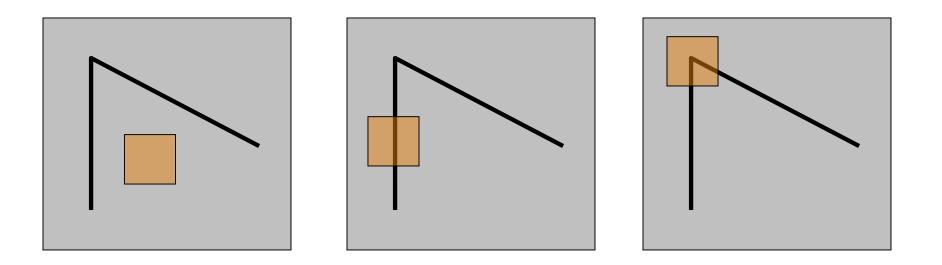
Categories image windows based on gradient statistics

- **Constant**: Little or no brightness change
- Edge: Strong brightness change in single direction
- Flow: Parallel stripes
- **Corner/spot**: Strong brightness changes in orthogonal directions

Local Measures of Uniqueness

Suppose we only consider a small window of pixels

 What defines whether a feature is a good or bad candidate?

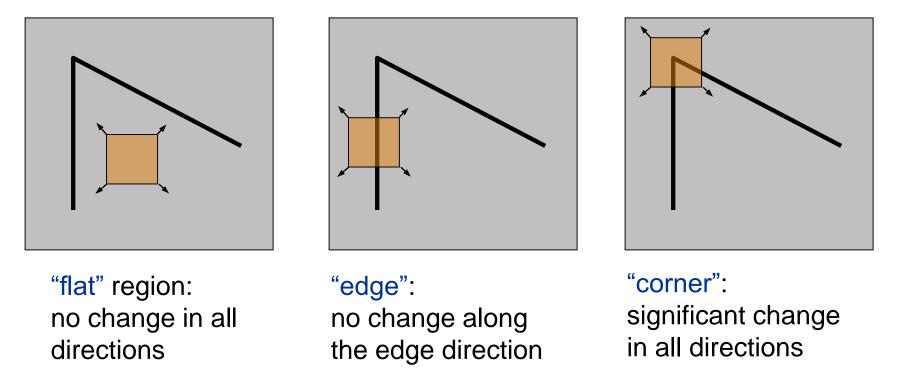


Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.

Feature Detection

Local measure of feature uniqueness

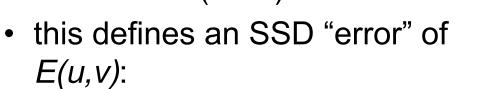
- How does the window change when you shift it?
- Shifting the window in *any direction* causes a *big change*

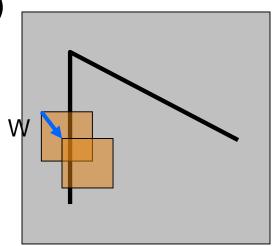


Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.

Consider shifting the window W by (u,v)

- how do the pixels in W change?
- compare each pixel before and after by summing up the squared differences (SSD)

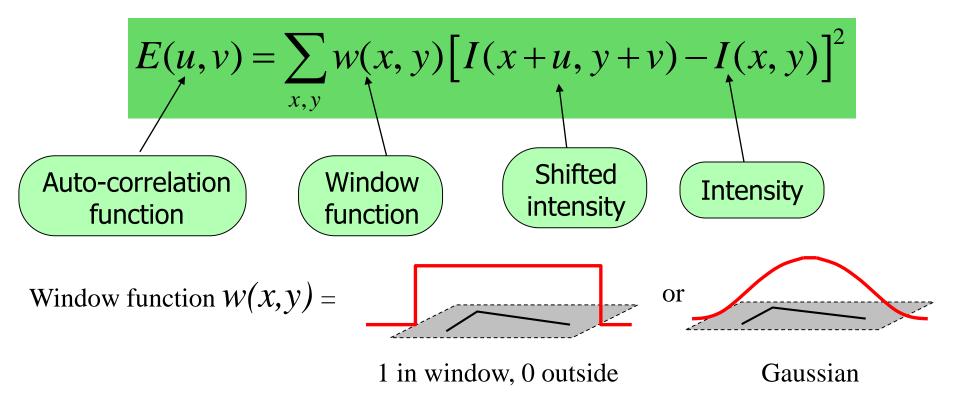




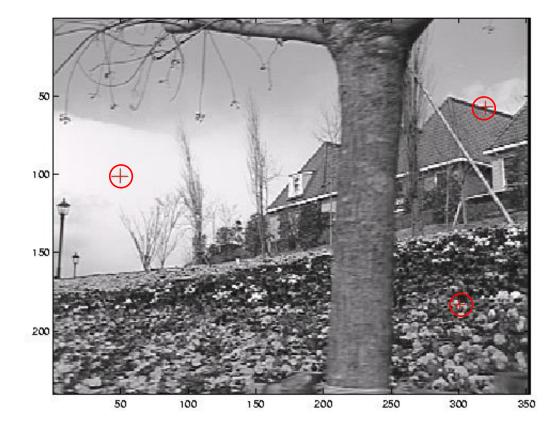
$$E(u,v) = \sum_{(x,y)\in W} \left[I(x+u,y+v) - I(x,y) \right]^2$$

Harris Detector: Mathematics

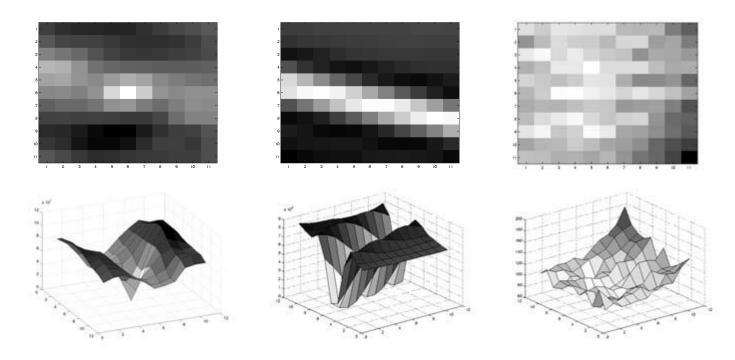
Change of intensity for the shift [*u*,*v*]:



Auto-Correlation Function



Auto-Correlation Function



Good unique minimum 1D aperture problem

No good peak

Small Motion Assumption

Taylor Series expansion of I:

$$I(x+u, y+v) = I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \text{higher order terms}$$

If the motion (u,v) is small, then first order approx is good

$$I(x + u, y + v) \approx I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v$$
$$\approx I(x, y) + [I_x \ I_y] \begin{bmatrix} u \\ v \end{bmatrix}$$
shorthand: $I_x = \frac{\partial I}{\partial x}$

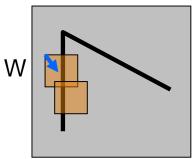
- Image gradient $\nabla I_0(\boldsymbol{x}_i)$
 - Harris detector with a [-2,-1,0,1,2] filter for Ix
 - Gaussian filter

Small Motion Assumption

$$I(x + u, y + v) \approx I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v$$
$$\approx I(x, y) + [I_x \ I_y] \begin{bmatrix} u \\ v \end{bmatrix}$$

Plugging this into the formula on

$$E(u,v) = \sum_{x,y} w(x,y) \left[I(x+u, y+v) - I(x,y) \right]^2$$



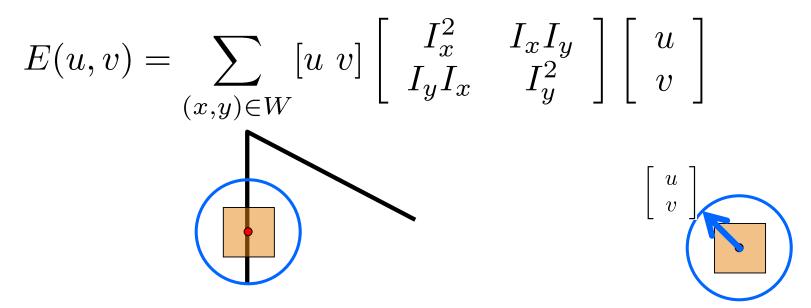
$$E(u,v) = \sum_{(x,y)\in W} \left[I(x+u,y+v) - I(x,y) \right]^2$$

$$\approx \sum_{(x,y)\in W} \left[I(x,y) + \left[I_x \ I_y \right] \left[\begin{array}{c} u \\ v \end{array} \right] - I(x,y) \right]^2$$

$$\approx \sum_{(x,y)\in W} \left[\left[I_x \ I_y \right] \left[\begin{array}{c} u \\ v \end{array} \right] \right]^2$$

This can be rewritten:

$$E(u,v) = \sum_{(x,y)\in W} \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} I_x^2 & I_x I_y \\ I_y I_x & I_y^2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$
$$= (u,v)A \begin{pmatrix} u \\ v \end{pmatrix} \qquad A = \sum_i \omega(\mathbf{x}_i) \begin{bmatrix} I_x^2(\mathbf{x}_i) & I_x(\mathbf{x}_i) I_y(\mathbf{x}_i) \\ I_x(\mathbf{x}_i) I_y(\mathbf{x}_i) & I_y^2(\mathbf{x}_i) \end{bmatrix}$$
Auto-correlation matrix



For the example above

- You can move the center of the blue window to anywhere on the blue unit circle
- Which directions will result in the largest and smallest E values?
- We can find these directions by looking at the eigenvectors of A

Quick eigenvalue/eigenvector review

The **eigenvectors** of a matrix **A** are the vectors **x** that satisfy:

$$Ax = \lambda x$$

The scalar λ is the **eigenvalue** corresponding to \boldsymbol{x}

The eigenvalues are found by solving:

$$det(A - \lambda I) = 0$$

• In our case, **A** is a 2x2 matrix, so we have

$$det \left[\begin{array}{cc} h_{11} - \lambda & h_{12} \\ h_{21} & h_{22} - \lambda \end{array} \right] = 0$$

• The solution:

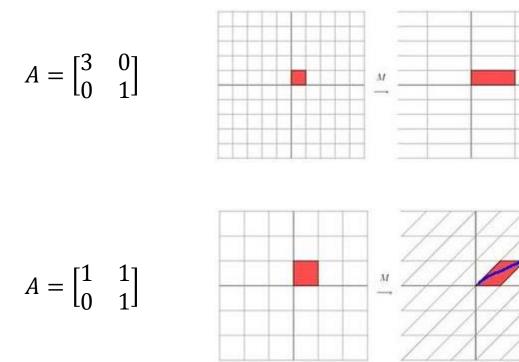
$$\lambda_{\pm} = \frac{1}{2} \left[(h_{11} + h_{22}) \pm \sqrt{4h_{12}h_{21} + (h_{11} - h_{22})^2} \right]$$

Once you know λ , you find **x** by solving

$$\begin{array}{cc} h_{11} - \lambda & h_{12} \\ h_{21} & h_{22} - \lambda \end{array} \right] \left[\begin{array}{c} x \\ y \end{array} \right] = 0$$

Quick eigenvalue/eigenvector review

A: A linear transformation



This can be rewritten:

$$E(u, v) = \sum_{(x,y)\in W} \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} I_x^2 & I_x I_y \\ I_y I_x & I_y^2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$
$$A = \sum_i \omega(\mathbf{x}_i) \begin{bmatrix} I_x^2(\mathbf{x}_i) & I_x(\mathbf{x}_i) I_y(\mathbf{x}_i) \\ I_x(\mathbf{x}_i) I_y(\mathbf{x}_i) & I_y^2(\mathbf{x}_i) \end{bmatrix}$$

Eigenvalues and eigenvectors of H = A

- Define shifts with the smallest and largest change (E value)
- x₊ = direction of largest increase in E.
- λ_{+} = amount of increase in direction x_{+}
- x₋ = direction of smallest increase in E.
- λ = amount of increase in direction x_+

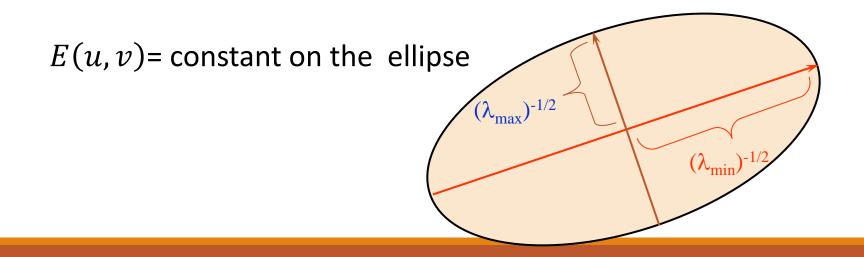
 $Ax_{+} = \lambda_{+}x_{+}$ $Ax_{-} = \lambda_{-}x_{-}$

$$\begin{aligned} x_+ A x_+ &= \lambda_+ \\ x_- A x_- &= \lambda_- \end{aligned}$$

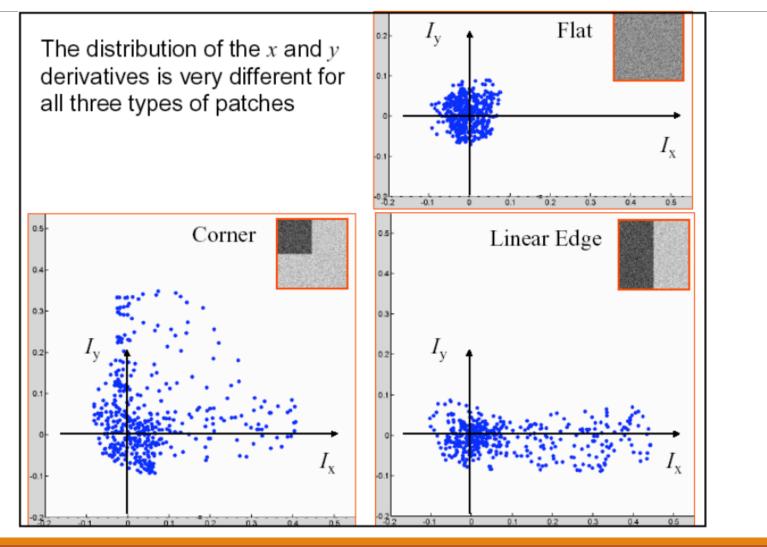
Intensity change in shifting window: eigenvalue analysis

$$E(u, v) \cong [u, v]A \begin{bmatrix} u \\ v \end{bmatrix} \lambda_1, \lambda_2 - \text{eigenvalues of } A$$

If we try every possible orientation (u,v), the max. change in intensity is λ_{\max}

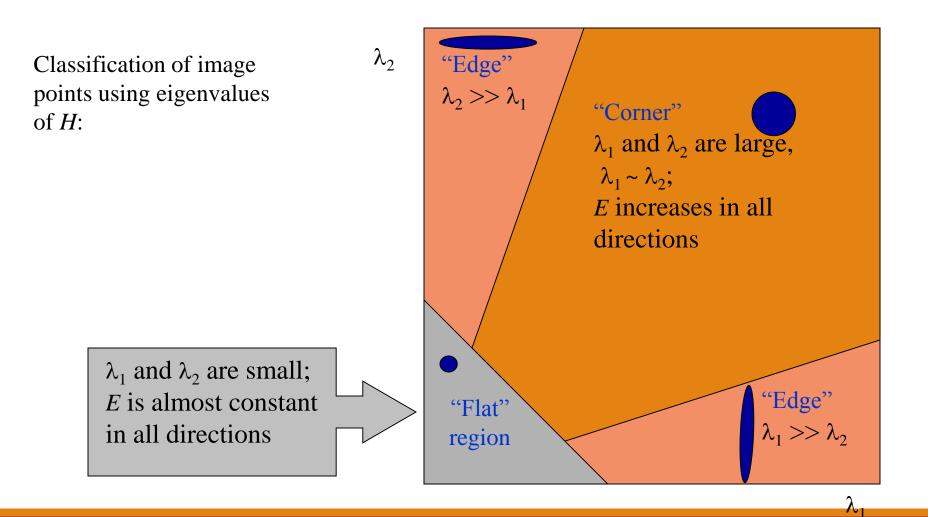


Plotting Derivatives as 2D Points



Slide from Robert Collins

Feature Detection: Mathematics



Feature Detection: Mathematics

How are λ_+ , x_+ , λ_- , and x_+ relevant for feature detection?

• What's our feature scoring function?

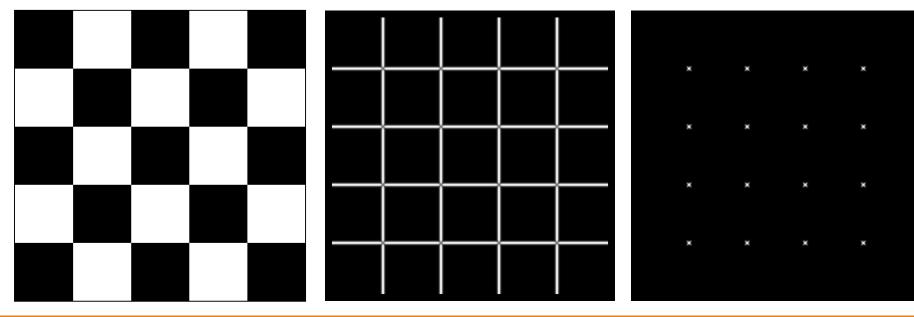
Feature Detection: Mathematics

How are λ_+ , x_+ , λ_- , and x_+ relevant for feature detection?

• What's our feature scoring function?

Want E(u,v) to be large for small shifts in all directions

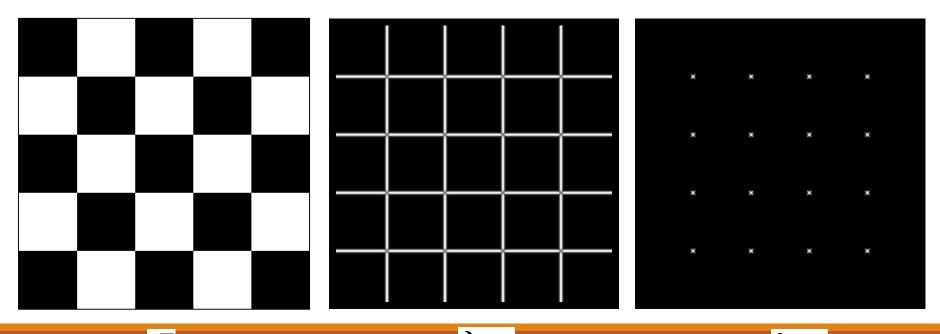
- the *minimum* of *E(u,v)* should be large, over all unit vectors [u v]
- this minimum is given by the smaller eigenvalue (λ_{-}) of A



Feature Detection

Here's what you do

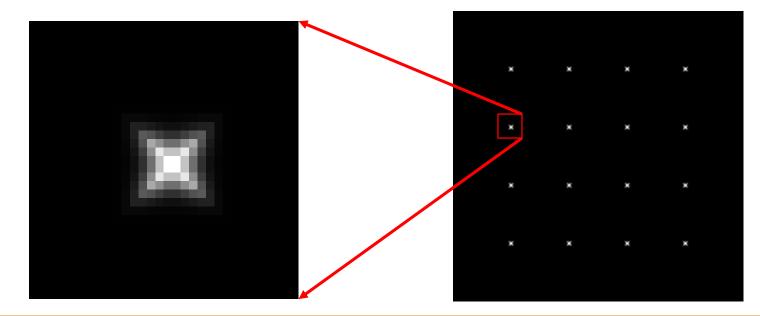
- Compute the gradient at each point in the image
- Create the A matrix from the entries in the gradient
- Compute the eigenvalues.
- Find points with large response (λ_{-} > threshold)
- Choose those points where $\lambda_{\underline{}}$ is a local maximum as features



Feature Detection

Here's what you do

- Compute the gradient at each point in the image
- Create the A matrix from the entries in the gradient
- Compute the eigenvalues.
- Find points with large response (λ_2 > threshold) [Shi and Tomasi 1994]
- Choose those points where $\lambda_{\underline{}}$ is a local maximum as features



Harris Detector

Harris and Stephens 1988

Measure of corner response:

$$R = \det A - k (\operatorname{trace} A)^2$$

det
$$A = \lambda_1 \lambda_2$$

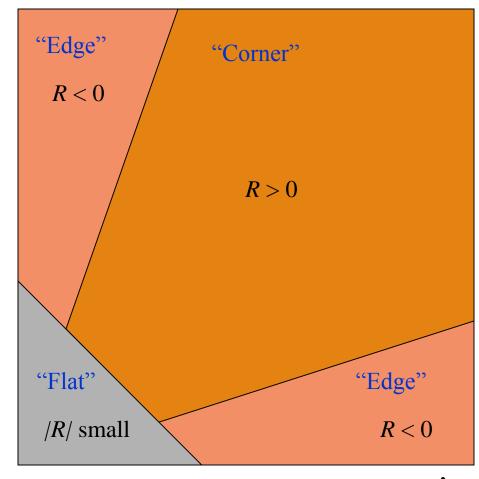
(*k* – empirical constant, *k* = 0.04-0.06)
trace $A = \lambda_1 + \lambda_2$

- The trace is the sum of the diagonals, i.e., $trace(A) = a_{11} + a_{22}$
- Very similar to λ_{-} but less expensive (no square root)

Harris Detector: Mathematics

 λ_2

- *R* depends only on eigenvalues of A
- *R* is large for a corner
- *R* is negative with large magnitude for an edge
- |R| is small for a flat region



Harris Detector

The Algorithm:

- Find points with large corner response function R (R > threshold)
- Take the points of local maxima of R

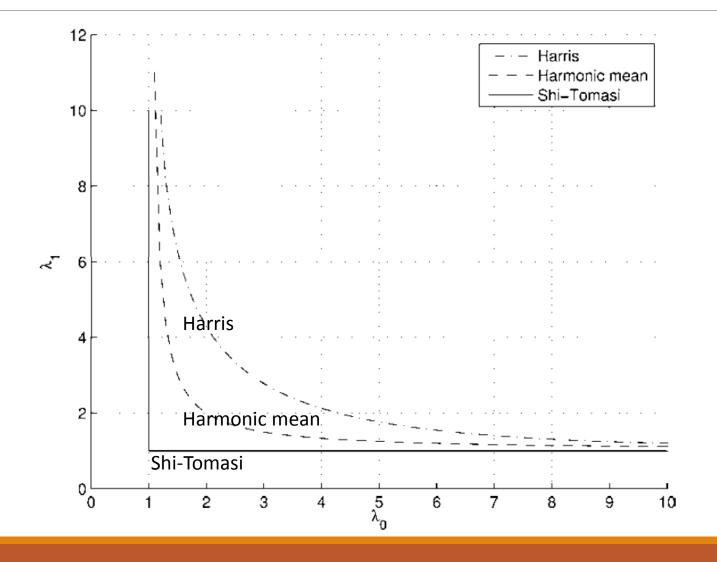
Harmonic Mean Brown, M., Szeliski, R., and Winder, S. (2005)

$$f = \frac{\det A}{\operatorname{tr} A} = \frac{\lambda_0 \lambda_1}{\lambda_0 + \lambda_1}$$

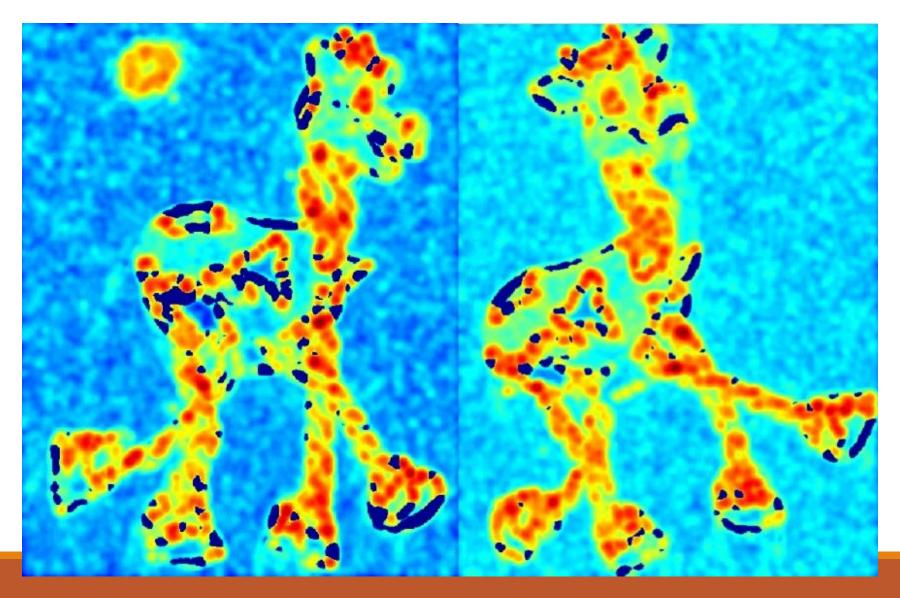
-Smoother function in the region where λ

$$\lambda_0 \approx \lambda_1$$

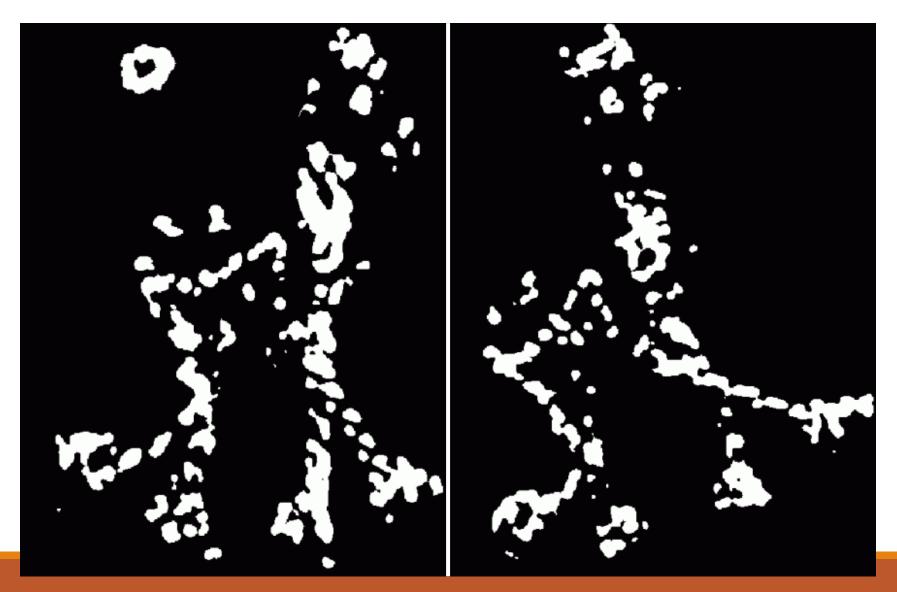
Isocontours of Response



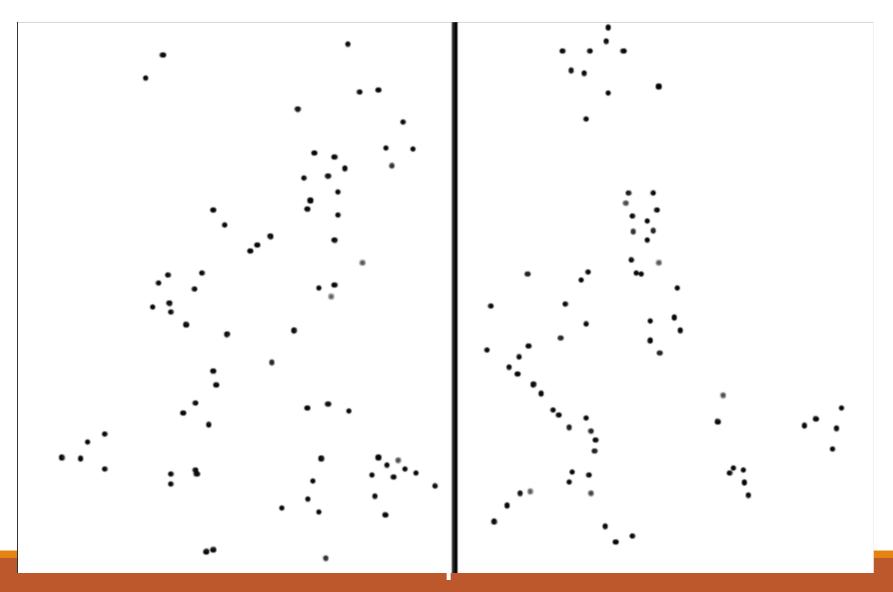
Compute corner response R



Find points with large corner response: R > threshold

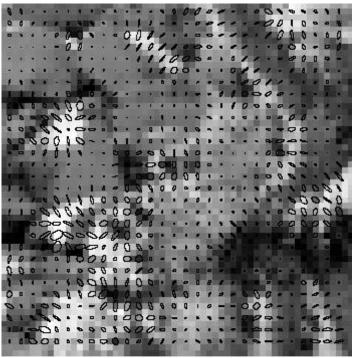


Take only the points of local maxima of ${\it R}$



Example: Gradient Covariances

Corners are where both eigenvalues are big

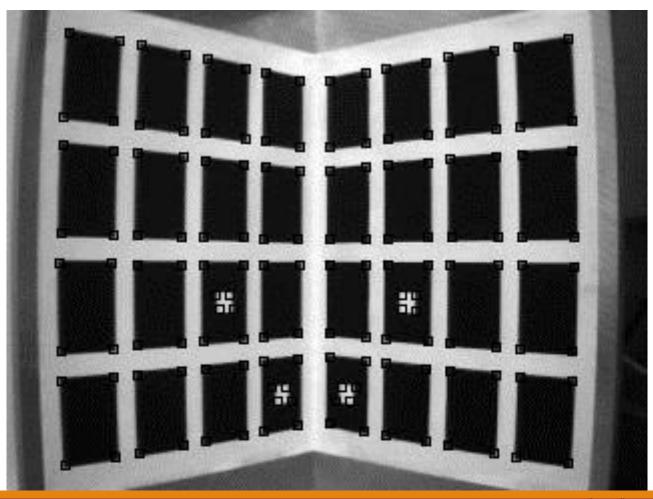


from Forsyth & Ponce

Full image

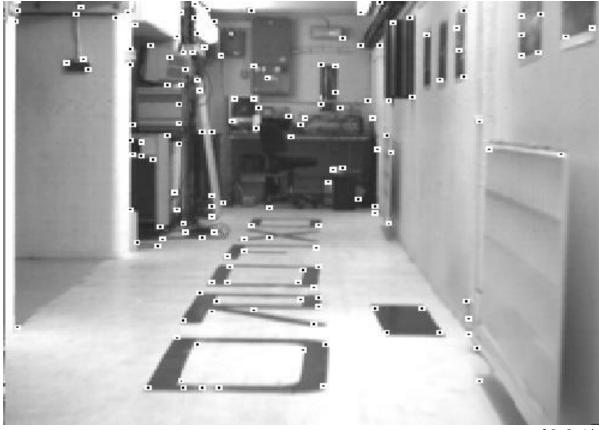
Detail of image with gradient covariance ellipses for 3 x 3 windows

Example: Corner Detection (for camera calibration)



courtesy of B. Wilburn

Example: Corner Detection



courtesy of S. Smith

SUSAN corners

Harris Detector: Summary

Average intensity change in direction [u, v] can be expressed as a bilinear form:

$$E(u,v) \cong \begin{bmatrix} u,v \end{bmatrix} \quad \mathbf{A} \quad \begin{bmatrix} u \\ v \end{bmatrix}$$

Describe a point in terms of eigenvalues of A : *measure of corner response*

$$R = \lambda_1 \lambda_2 - k \left(\lambda_1 + \lambda_2\right)^2$$

A good (corner) point should have a *large intensity change* in *all directions*, i.e. *R* should be large positive

Outline of Feature Detection

- 1. Compute the horizontal and vertical derivatives of the image Ix and Iy by convolving the original image with derivatives of Gaussians
- 2. Compute the three images corresponding to the outer products of these gradients. (The matrix A is symmetric, so only three entries are needed.)
- 3. Convolve each of these images with a larger Gaussian.
- 4. Compute a scalar interest measure using one of the formulas discussed above.
- 5. Find local maxima above a certain threshold and report them as detected feature point locations.

Adaptive Non-Maximal Suppression (ANMS)

(a) Strongest 250

(b) Strongest 500

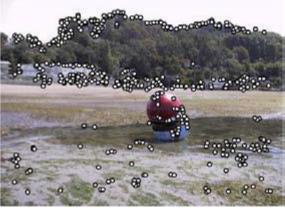
Uneven distribution

Local maxima & Response value should be significantly (10%) larger than all of its neighbors within a radius (r)

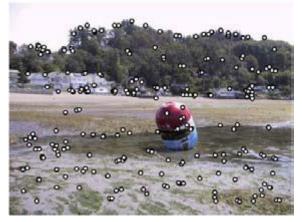
Adaptive suppression radius r

Adaptive Non-Maximal Suppression (ANMS)

(a) Strongest 250



(b) Strongest 500



(c) ANMS 250, r = 24

(d) ANMS 500, r = 16

Invariance

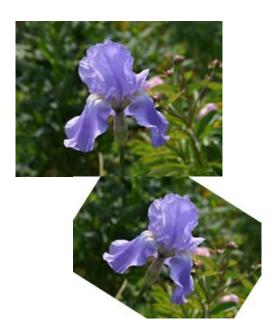
Suppose you rotate the image by some angle

• Will you still pick up the same features?

What if you change the brightness?

Scale?

Invariance



$$\boldsymbol{A} = \boldsymbol{w} \ast \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Rotation Translation Brightness

Repeatability of feature detector:

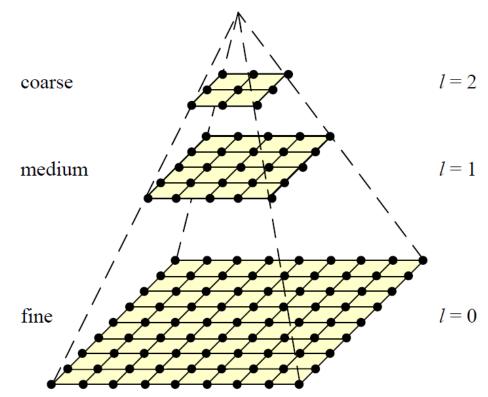
frequency with which keypoints are detected in one image are found within ϵ (ϵ =1.5) pixels of the corresponding location in a transformed image

Scale Invariance

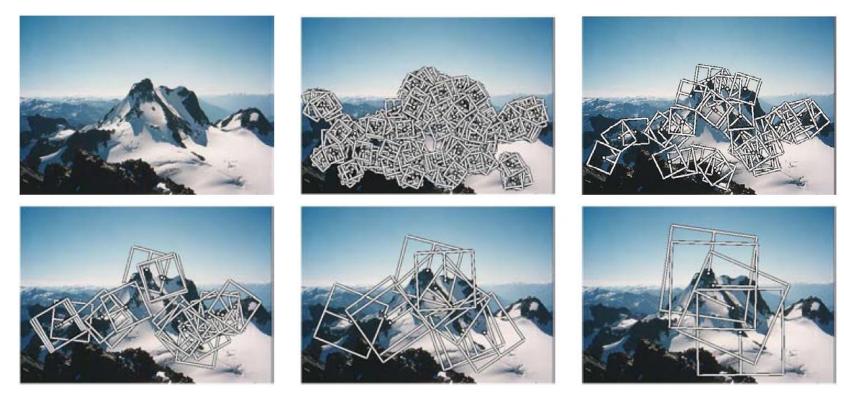
Detect features at a variety of scales

Multiple resolutions in a pyramid

Matching in all possible levels



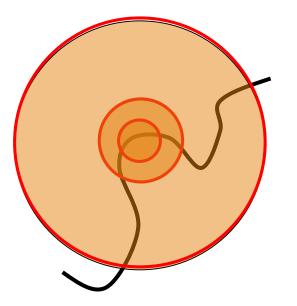
Multi-Scale Oriented Patches



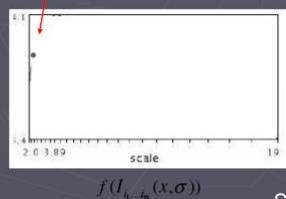
A fixed number of scales

Scale invariant detection

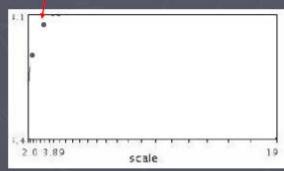
Suppose you're looking for corners

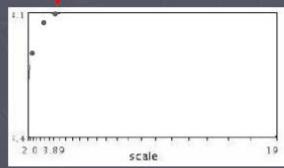


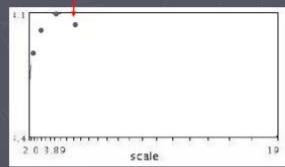
Lindeberg et al., 1996

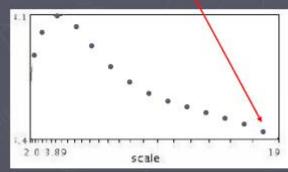


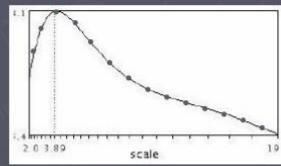
Slide from Tinne Tuytelaars

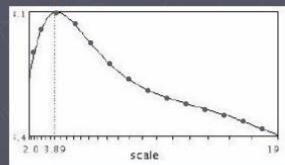


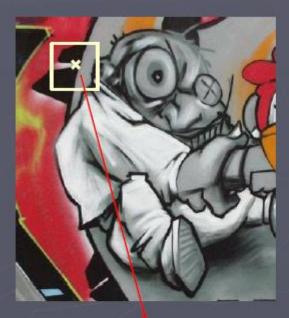


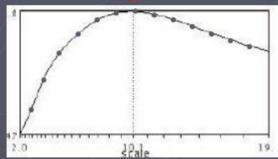












 $f(I_{i_1...i_m}(x',\sigma'))$

Normalize: rescale to fixed size

SIFT Feature

Distinctive Image Features from Scale-Invariant Keypoints, David G. Lowe

Scale Invariant Feature Transform (SIFT)

Detect features that densely cover the image over the full range of scales and locations

Keypoint Detection and Matching

Four steps:

- Feature detection
- Feature description
- Feature matching
- Feature tracking

SIFT Background

Scale-invariant feature transform

- **SIFT:** to **detect** and **describe** local features in an images.
- Proposed by *David Lowe* in ICCV1999.
- Refined in IJCV 2004.
- Wildly used in image search, object recognition, video tracking, gesture recognition, etc.



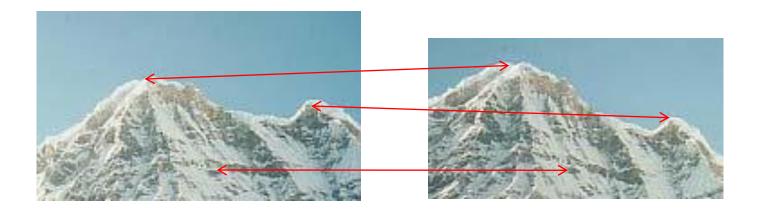
David Lowe Professor in UBC

[PDF] Distinctive Image Features from Scale-Invariant Keypoints https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf ▼翻译此页 作者: DG Lowe - 2004 - 被引用次数: 34128 - 相关文章 2004年1月5日 - David G. Lowe. Computer ... This approach has been named the Scale Invariant Feature Transform (SIFT), as it transforms image data into ...

Distinctive Image Features from Scale-Invariant Keypoints | SpringerLink https://link.springer.com/article/10.1023/B:VISI.0000029664.99615.94 - 翻译此页 作者:DG Lowe - 2004 - 被引用次数: 43408 - 相关文章 Abstract. This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different ...

Why SIFT is so popular?

An instance of object matching



Why SIFT is so popular?

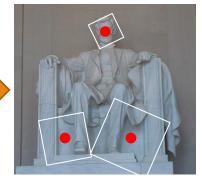
Desired property of SIFT

- Invariant to scale change
- Invariant to rotation change
- Invariant to illumination change
- Robust to addition of noise
- Robust to substantial range of affine transformation
- Robust to 3D view point
- Highly distinctive for discrimination

How to extract SIFT

Test image

Detector: where are the local features?



Descriptor: how to describe them?

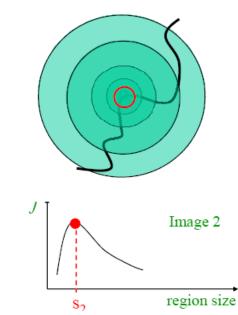
SIFT Detector

Desired properties for detector

- **Position**: Repeatable across different changes
- Scale: automatic scale estimation

Intuition: Find scale that gives local maxima of some function *f* in both position and scale.





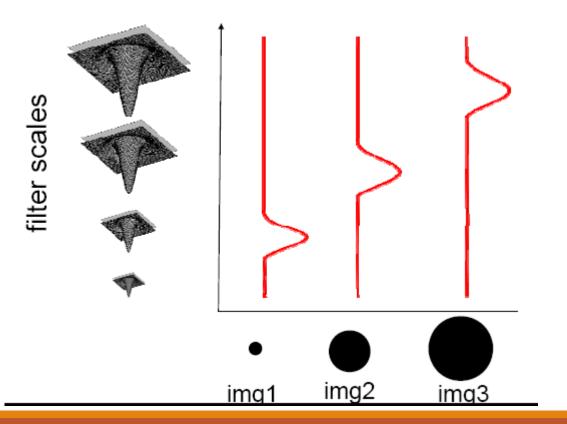
What can be the "signature" function f?

Scale-space kernel

 $f(x,y,\sigma)$

What can be the "signature" function *f*?

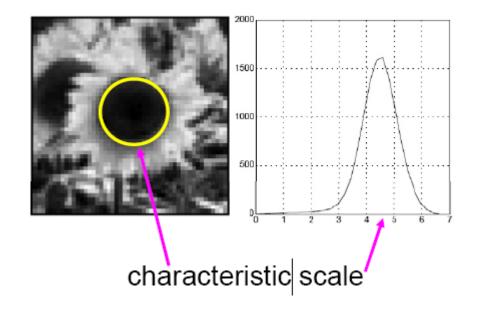
Laplacian-of-Gaussian = "**blob**" detector

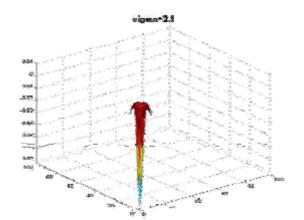


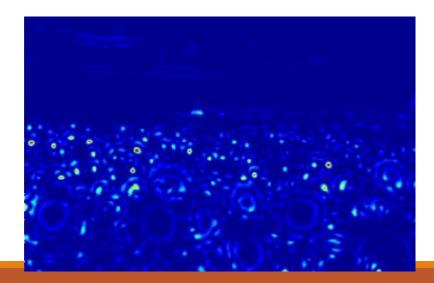
 $\nabla^2 g = \frac{\partial^2 g}{\partial r^2} + \frac{\partial^2 g}{\partial v^2}$

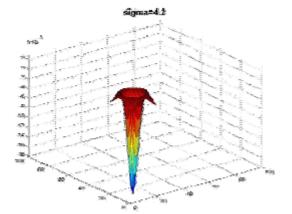
At a given point in the image:

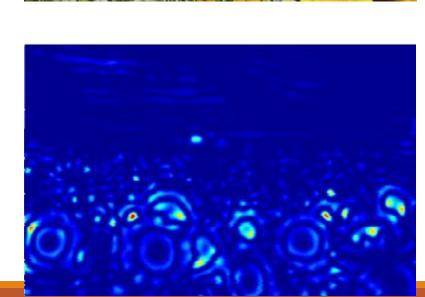
We define the *characteristic scale* as the scale that produces peak of Laplacian response

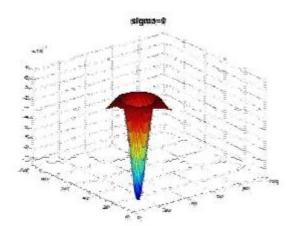


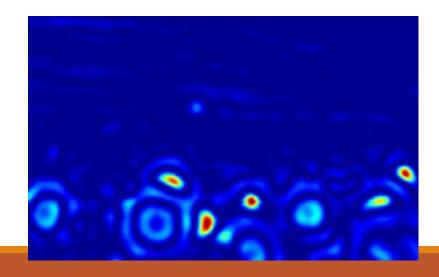


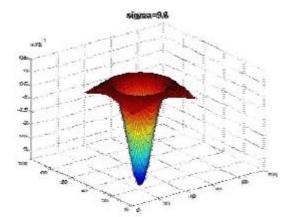


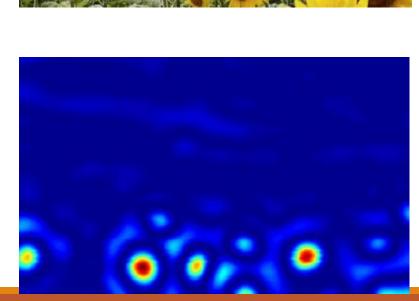


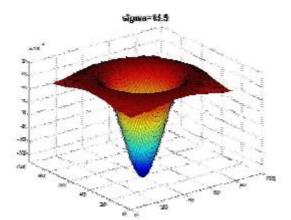


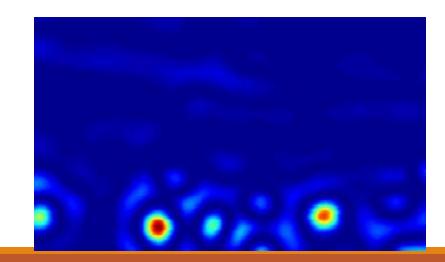


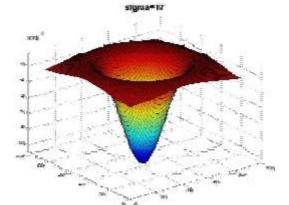




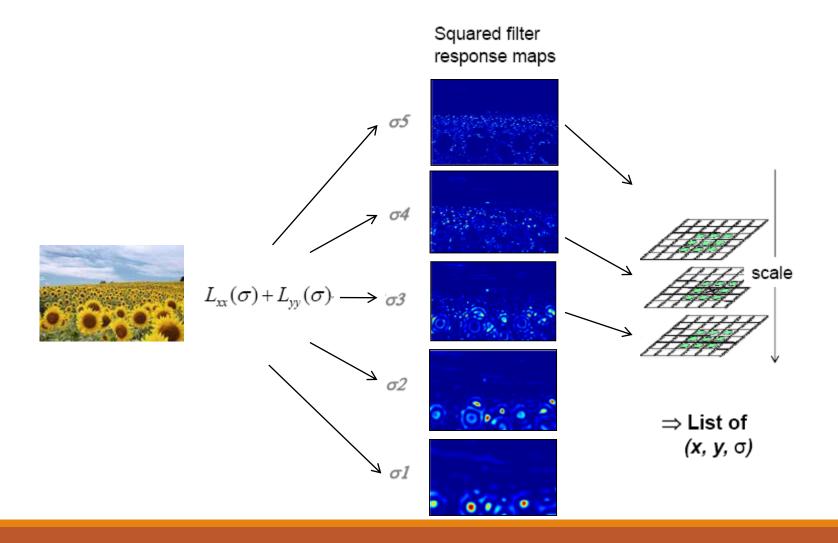








Scale-space blob detection



Scale-space blob detector: Example

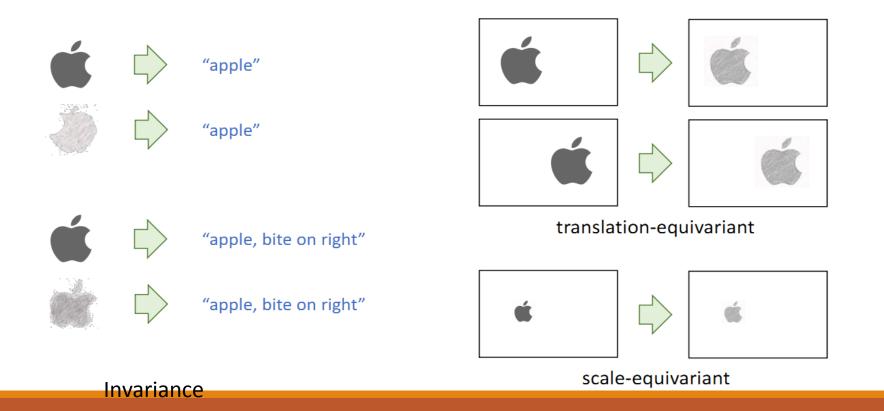
Invariant vs. Equivariant

Invariance

Equivariance

f(g[I(x)]) = f(I(x))f(g[I(x)]) = g[f(I(x))]

h: Image transformation f: Image filter



IS LOG scale-invariant?

$$G_{\sigma}(x,y) = G(x,y,\sigma) = \frac{1}{2\pi\sigma^2} e^{-(x^2+y^2)/2\sigma^2}$$
$$\nabla^2 G_{\sigma}(x,y) = \left(\frac{x^2+y^2}{\sigma^4} - \frac{2}{\sigma^2}\right) G_{\sigma}(x,y)$$

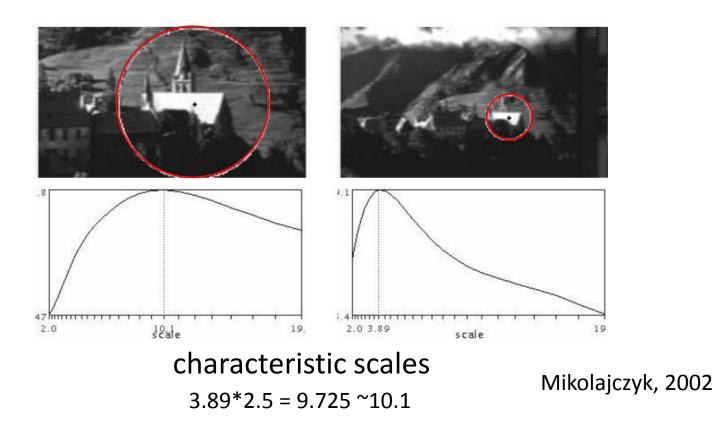
The scale-space kernel [Koenderink (1984)] [Lindeberg (1994)]

The normalization of the Laplacian with the factor σ^2 is required for true scale invariance. --Lindeberg (1994)

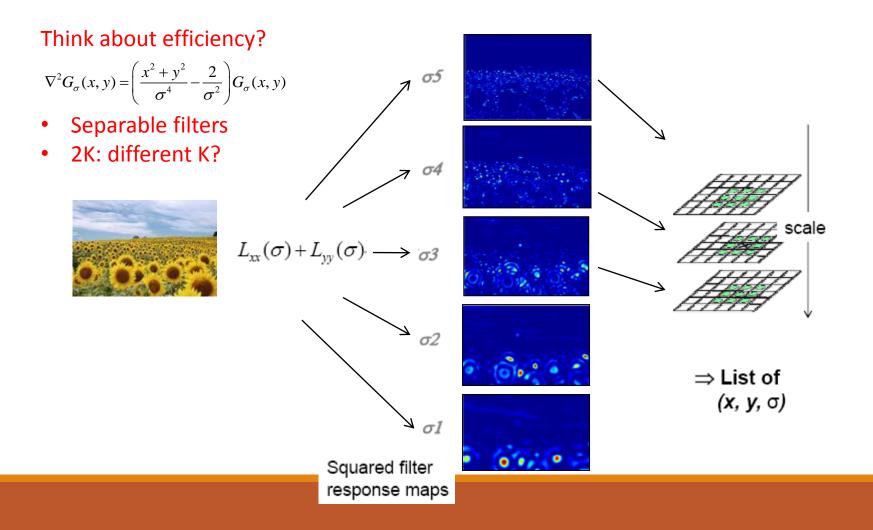
$$\sigma^2 \nabla^2 \mathbf{G}_{\sigma}(x, y) = \frac{x^2 + y^2 - 2\sigma^2}{\sigma^2} \mathbf{G}_{\sigma}(x, y)$$

IS LOG scale-invariant?

I-right =resize(I-left, 2.5)



Scale-space blob detection



Separable Filter

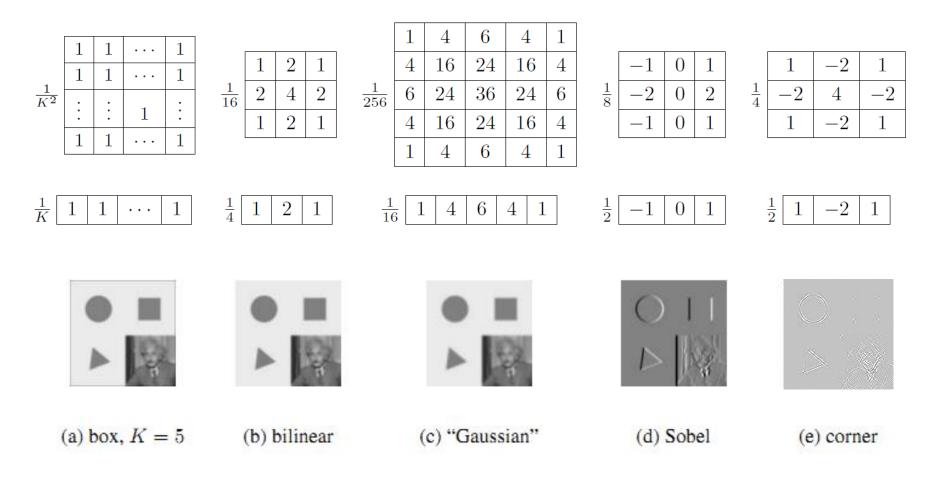
Convolution of K-size kernel requires K² operations

Can be sped up to 2K operations by

- First performing a 1D horizontal convolution
- Followed by a 1D vertical convolution

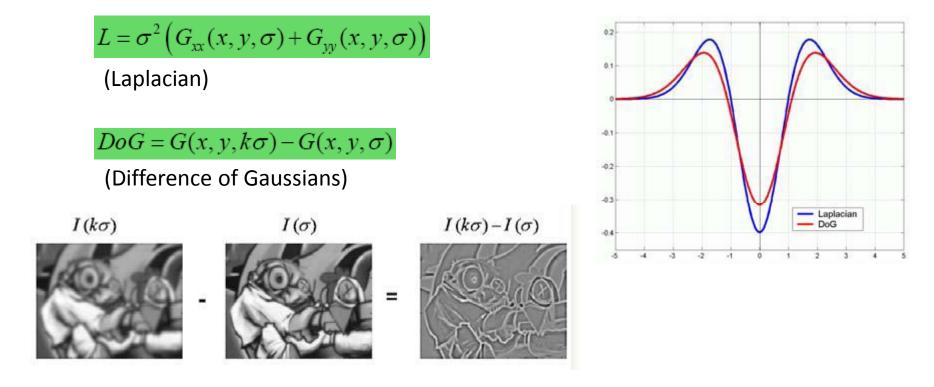
 $K = vh^T$

Separable Filter



Technical detail

We can approximate the Laplacian with a difference of Gaussians; more efficient to implement.



Difference of Gaussian (DoG)

Gaussian $G_{\sigma_1}(x, y) = \frac{1}{2\pi\sigma_1^2} e^{-\frac{x^2 + y^2}{2\sigma_1^2}}$

 $g_1(x, y) = G_{\sigma_1}(x, y) * f(x, y)$ $g_2(x, y) = G_{\sigma_2}(x, y) * f(x, y)$

DoG

$$g_{1}(x, y) - g_{2}(x, y) = G_{\sigma_{1}} * f(x, y) - G_{\sigma_{2}} * f(x, y)$$
$$= (G_{\sigma_{1}} - G_{\sigma_{2}}) * f(x, y)$$

$$DoG \square G_{\sigma_1} - G_{\sigma_2} = \frac{1}{2\pi} \left(\frac{1}{\sigma_1^2} e^{-\frac{x^2 + y^2}{2\sigma_1^2}} - \frac{1}{\sigma_2^2} e^{-\frac{x^2 + y^2}{2\sigma_2^2}} \right)$$

Relationship between DoG and LoG

Heat diffusion equation

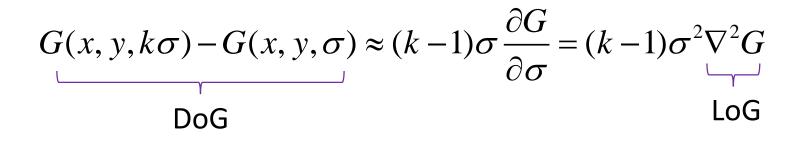
$$\frac{\partial G}{\partial \sigma} = -\frac{1}{\pi \sigma^3} e^{-\frac{x^2 + y^2}{2\sigma^2}} + \frac{x^2 + y^2}{2\pi \sigma^5} e^{-\frac{x^2 + y^2}{2\sigma^2}} = \sigma \left(\frac{x^2 + y^2}{\sigma^4} - \frac{2}{\sigma^2}\right) \frac{1}{2\pi \sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}} = \sigma \nabla^2 G$$

Finite difference

$$\sigma \nabla^2 \mathbf{G}_{\sigma}(x, y) = \frac{\partial \mathbf{G}}{\partial \sigma} \approx \frac{\mathbf{G}(x, y, k\sigma) - \mathbf{G}(x, y, \sigma)}{k\sigma - \sigma}$$

$$\mathbf{G}(x, y, k\sigma) - \mathbf{G}(x, y, \sigma) \approx (k-1)\sigma^2 \nabla^2 \mathbf{G}(x, y, \sigma)$$

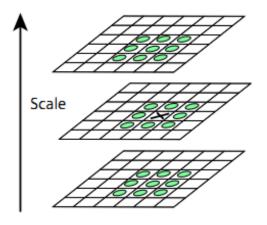
Log V.S. Dog



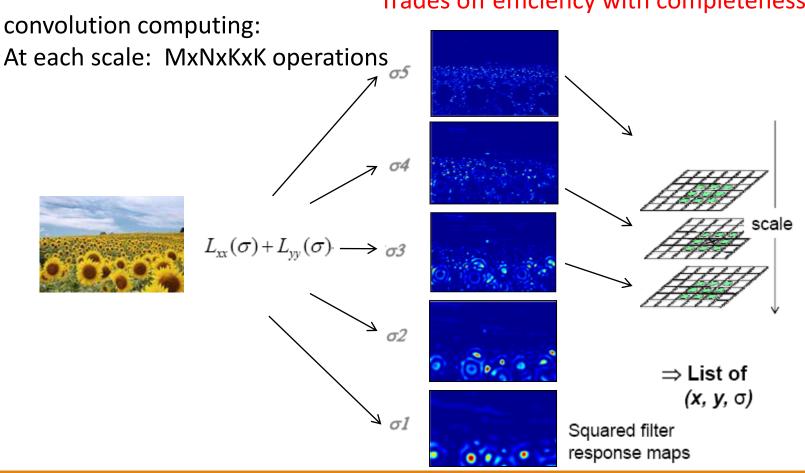
- Normalized LoG $\sigma^2 \nabla^2 G$ for true scale invariance
- DoG has scales differing by a factor k-1
- Build scale-space with a constant k over all scales

Maxima and minima of DoG

Maxima and minima of the DoG images are detected by comparing a pixel (marked with X) to its 26 neighbors in 3x3 regions at the current and adjacent scales



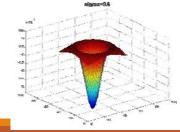
Sampling frequency

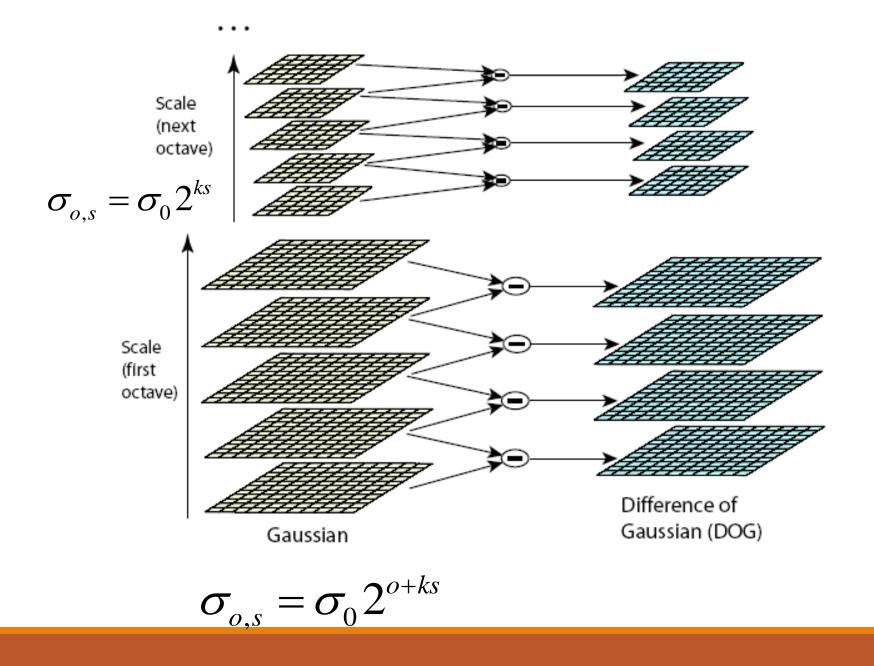


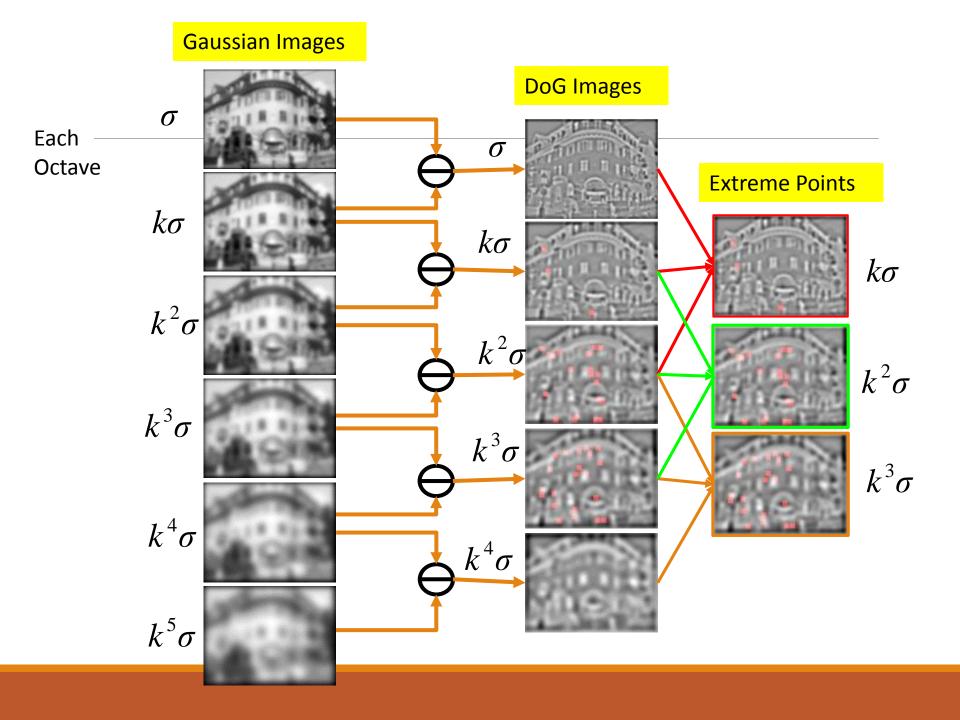
Trades off efficiency with completeness

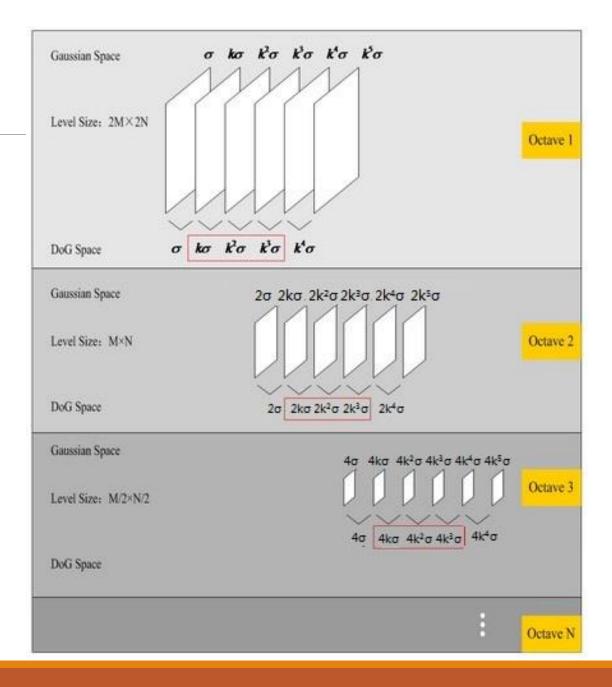
DoG Image Pyramid

 $\sigma_0, k\sigma_0, k^2\sigma_0, k^3\sigma_0, k^4\sigma_0, k^5\sigma_0, k^6\sigma_0, \dots$ image MxN, filter 2Kx2K $\sigma_0 \rightarrow 2\sigma_0$ image M/2xN/2, filter, KxK

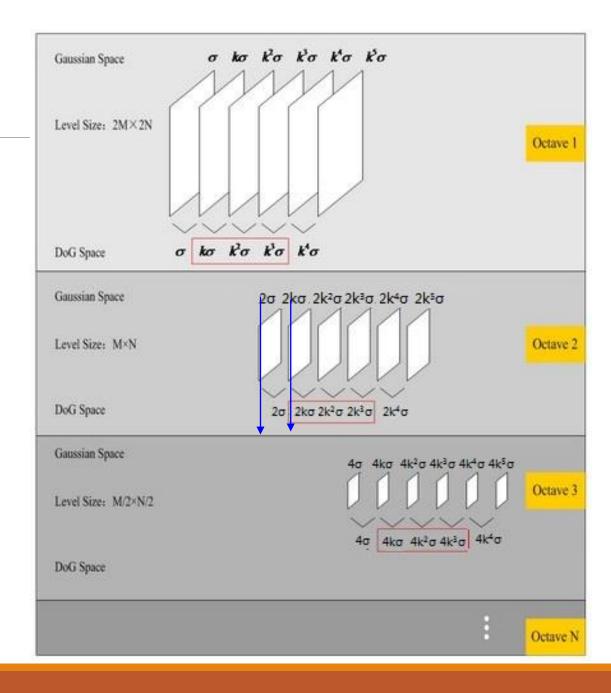








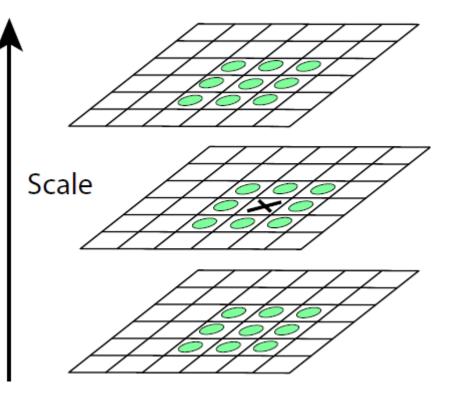
Resample the Gaussian image that has twice the initial value of σ by taking every second pixel in each row and column.



Local Extrema Detection

Maxima and minima

Compare x with its 26 neighbors at 3 scales



Frequency of sampling in scale

s: intervals in each octave of scale space ($\sigma_0 \rightarrow 2\sigma_0$) • k=2^{1/s}

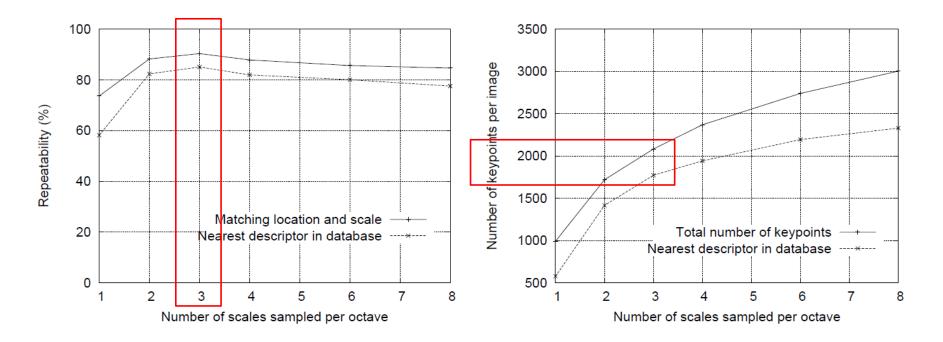
$$\sigma_{o,s} = \sigma_0 2^o k^s$$

In order to cover a complete octave for extrema detection

- S = s+3 Gaussian images are produced for each octave
 s: {-1,S+1}
- s+2 DoG images
- s scales for extrema detection

Frequency of Sampling in Scale

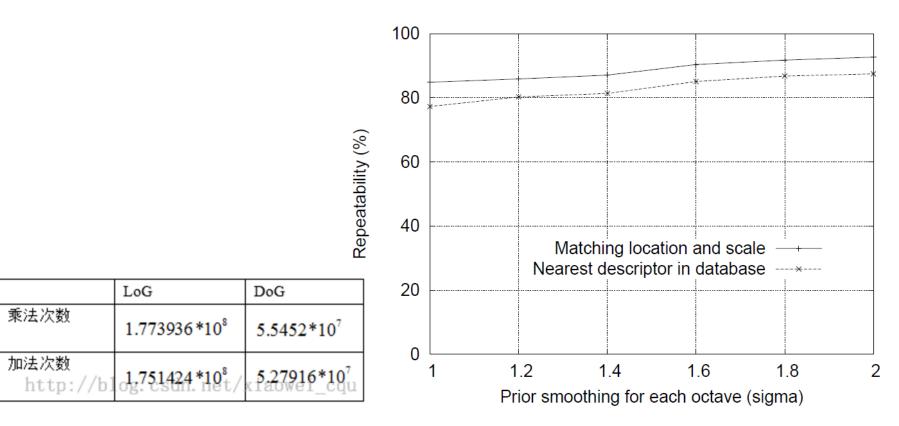
s=3



Frequency of Sampling in Domain

Trade-off between sampling frequency and rate of detection

 σ =1.6



Frequency of Sampling in Domain

While pre-smooth image, discarding the highest spatial frequencies

Double the size of input image using linear interpolation as the first level of the pyramid

- Blur the original image at least with sigma=0.5 to prevent significant aliasing
- Increasing the number of stable keypoints by a factor of~4

Accurate Keypoint Localization

Derivatives D at the sample point (x,y,sigma) with offset x

Location of
$$D(\mathbf{x}) = D + \frac{\partial D}{\partial \mathbf{x}}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \frac{\partial^2 D}{\partial \mathbf{x}^2} \mathbf{x}$$

$$\hat{\mathbf{x}} = -\frac{\partial^2 D}{\partial \mathbf{x}^2}^{-1} \frac{\partial D}{\partial \mathbf{x}}$$
 DoG image

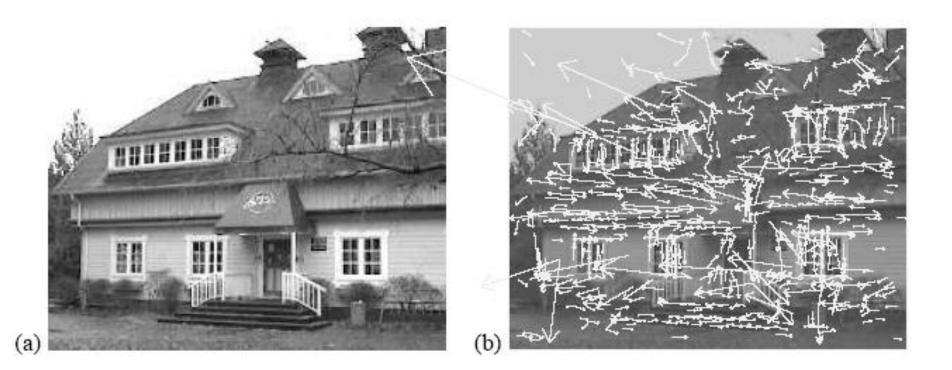
Eliminating unstable keypoint

If x^ > 0.5 in any dimension, closer to a different sample point

$$D(\mathbf{\hat{x}}) = D + \frac{1}{2} \frac{\partial D^{T}}{\partial \mathbf{x}}^{T} \mathbf{\hat{x}}$$

Discard extremum that $|D(\hat{\mathbf{x}})| < 0.03$

Eliminating unstable keypoint



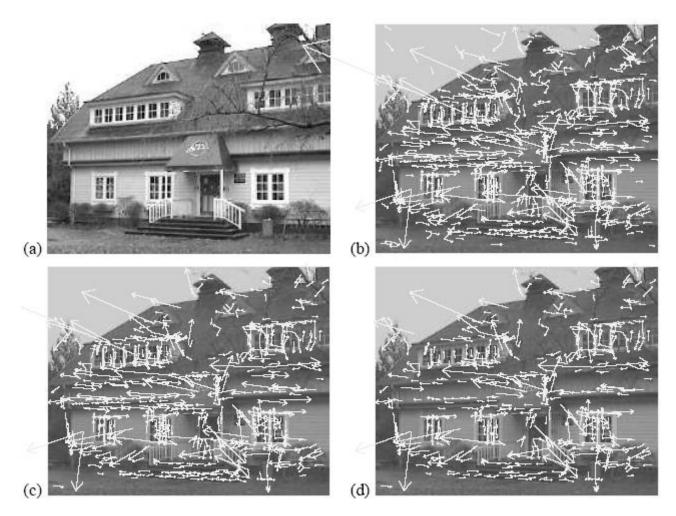


Figure 5: This fi gure shows the stages of keypoint selection. (a) The 233x189 pixel original image. (b) The initial 832 keypoints locations at maxima and minima of the difference-of-Gaussian function. Keypoints are displayed as vectors indicating scale, orientation, and location. (c) After applying a threshold on minimum contrast, 729 keypoints remain. (d) The fi nal 536 keypoints that remain following an additional threshold on ratio of principal curvatures.

Eliminating Edge Responses

Motivation

- DoG aims to detect "blob".
- DoG function have a strong response along edges.
- Remove such key points by Hessian Matrix analysis

Hessian matrix

• Formulation H=A

$$\mathbf{H} = \begin{bmatrix} D_{xx} & D_{xy} \\ D_{xy} & D_{yy} \end{bmatrix} \qquad A = \sum_{i} \omega(\mathbf{x}_{i}) \begin{bmatrix} I_{x}^{2}(\mathbf{x}_{i}) & I_{x}(\mathbf{x}_{i})I_{y}(\mathbf{x}_{i}) \\ I_{x}(\mathbf{x}_{i})I_{y}(\mathbf{x}_{i}) & I_{y}^{2}(\mathbf{x}_{i}) \end{bmatrix}$$

Eliminating Edge Responses

$$\operatorname{Tr}(\mathbf{H}) = D_{xx} + D_{yy} = \alpha + \beta,$$
$$\operatorname{Det}(\mathbf{H}) = D_{xx}D_{yy} - (D_{xy})^2 = \alpha\beta.$$
$$\alpha = r\beta$$
$$\frac{\operatorname{Tr}(\mathbf{H})^2}{\operatorname{Det}(\mathbf{H})} = \frac{(\alpha + \beta)^2}{\alpha\beta} = \frac{(r\beta + \beta)^2}{r\beta^2} = \frac{(r+1)^2}{r},$$
$$\frac{\operatorname{Tr}(\mathbf{H})^2}{\operatorname{Det}(\mathbf{H})} < \frac{(r+1)^2}{r}.$$
 r=10

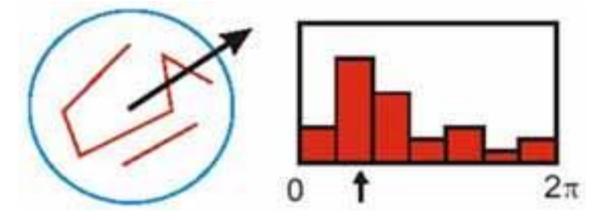
Orientation

Gradient and angle:

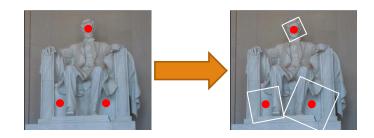
$$m(x, y) = \sqrt{(L(x+1, y) - L(x-1, y))^2 + (L(x, y+1) - L(x, y-1))^2}$$

$$\theta(x, y) = a \tan 2((L(x, y+1) - L(x, y-1))/(L(x+1, y) - L(x-1, y)))$$

Orientation selection

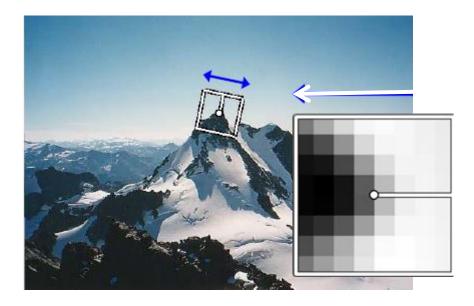


SIFT Descriptor



SIFT Descriptor

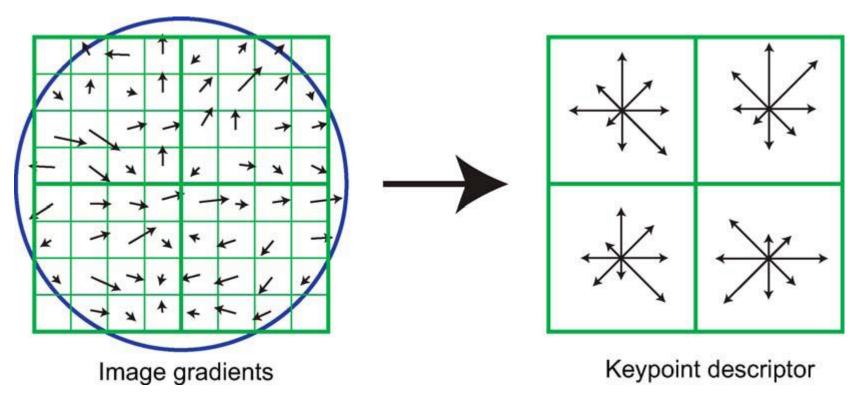
Making descriptor rotation invariant



- Rotate patch according to its dominant gradient orientation
- This puts the patches into a canonical orientation.

SIFT Descriptor

Use histograms to bin pixels within sub-patches according to their orientation.



Summary of SIFT Feature

Descriptor: 128-D

• 4 by 4 patches, each with 8-D gradient angle histogram:

 $4 \times 4 \times 8 = 128$

Normalized to reduce the effects of illumination change.

Position: (x, y)

• Where the feature is located at.

Scale

• Control the region size for descriptor extraction.

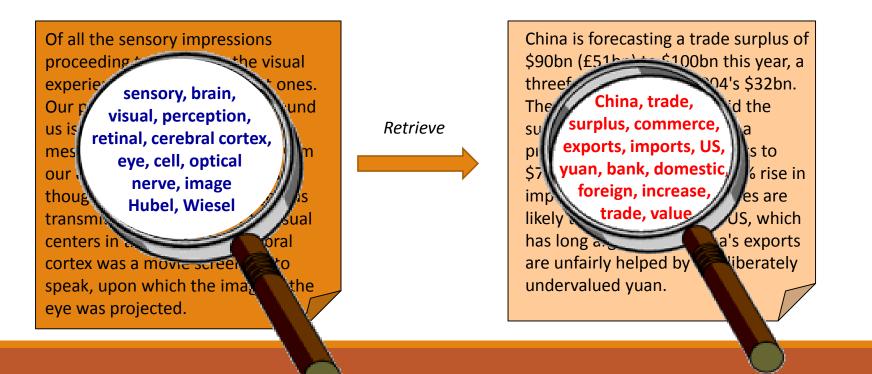
Orientation

• To achieve rotation-invariant descriptor.

Application in Image Search

- Text Words in Information Retrieval (IR)
 - Compactness
 - Descriptiveness

Bag-of-Word model



Conclusion of SIFT

Merit

- Desired property in invariance in changes of scale, rotation, illumination, *etc*.
- Highly distinctive and descriptive in local patch.
- Especially effective in rigid object representation.

Drawback

- Time consuming for extraction
 - About one second in average for an image with size of 400 by 400.
- Poor performance for un-rigid object.
 - Such as human face, animal, etc.
- May fail to work in severe affine distortion.
 - The local patch is a circle, instead of an ellipse adjusted to the affine distortion.